Markscheme

November 2020

Mathematics

Standard level

Paper 1

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\mathbf{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (\mathbf{M}, $A, R)$.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

$9 \quad$ Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable.

12
 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer.

Section A

1. (a) (i) valid approach to find t
eg $t+3=19,19-3$
$t=16$ (may be seen on Venn diagram) A1
(ii) valid approach to find v
eg $t+3+v+6=30,30-19-6$
$v=5$ (may be seen on Venn diagram)
(b) valid approach
(M1)
eg $16+5,21$ students, $1-\frac{3+6}{30}$,

$\frac{21}{30}\left(=\frac{7}{10}\right)$
2. (a) METHOD 1 - (sine rule)
evidence of choosing sine rule
eg $\frac{\sin \hat{A}}{a}=\frac{\sin \hat{B}}{b}$
correct substitution
eg $\frac{\sqrt{3} / 3}{10}=\frac{\sin \theta}{15}, \frac{\sqrt{3}}{30}=\frac{\sin \theta}{15}, \frac{\sqrt{3}}{30}=\frac{\sin \mathrm{B}}{15}$
$\sin \theta=\frac{\sqrt{3}}{2}$
A1
N2

METHOD 2 - (perpendicular from vertex C)

valid approach to find perpendicular length (may be seen on diagram)
eg

correct perpendicular length
eg $\frac{15 \sqrt{3}}{3}, 5 \sqrt{3}$
$\sin \theta=\frac{\sqrt{3}}{2}$

Note: Do not award the final \boldsymbol{A} mark if candidate goes on to state $\sin \theta=\frac{\pi}{3}$, as this demonstrates a lack of understanding.
(b) attempt to substitute into double-angle formula for cosine
$1-2\left(\frac{\sqrt{3}}{3}\right)^{2}, 2\left(\frac{\sqrt{6}}{3}\right)^{2}-1,\left(\frac{\sqrt{6}}{3}\right)^{2}-\left(\frac{\sqrt{3}}{3}\right)^{2}, \cos (2 \theta)=1-2\left(\frac{\sqrt{3}}{2}\right)^{2}, 1-2 \sin ^{2}\left(\frac{\sqrt{3}}{3}\right)$
correct working
eg $\quad 1-2 \times \frac{3}{9}, 2 \times \frac{6}{9}-1, \frac{6}{9}-\frac{3}{9}$
$\cos (2 \times \mathrm{CAB})=\frac{3}{9} \quad\left(=\frac{1}{3}\right)$
3. (a) recognize $f(x)=0$
eg $\sqrt{12-2 x}=0,2 x=12$
$a=6($ accept $x=6,(6,0))$
(b) attempt to substitute either their limits or the function into volume formula (must involve f^{2})
eg $\quad \int_{0}^{6} f^{2} \mathrm{~d} x, \pi \int(\sqrt{12-2 x})^{2}, \pi \int_{0}^{6} 12-2 x \mathrm{~d} x$
correct integration of each term
eg $\quad 12 x-x^{2}, 12 x-x^{2}+c,\left[12 x-x^{2}\right]_{0}^{6}$
substituting limits into their integrated function and subtracting (in any order)
eg $\quad \pi\left(12(6)-(6)^{2}\right)-\pi(0), 72 \pi-36 \pi,\left(12(6)-(6)^{2}\right)-(0)$
Note: Award $\boldsymbol{M} \mathbf{0}$ if candidate has substituted into f, f^{2} or f^{\prime}.
volume $=36 \pi$
4. (a) attempt to substitute coordinates (in any order) into f
eg $\quad a \log _{3}(13-4)=7, a \log _{3}(7-4)=13, a \log 9=7$
finding $\log _{3} 9=2$ (seen anywhere)
eg $\quad \log _{3} 9=2,2 a=7$
$a=\frac{7}{2}$
A1
(b)

A1A1A1

Note: Award A1 for correct shape of logarithmic function (must be increasing and concave down).
Only if the shape is correct, award the following:
A1 for being asymptotic to $x=4$
A1 for curve including both points in circles.
5. METHOD 1 - (discriminant)
correct expression for g
eg $\quad-\left(-x^{2}+4 x+5\right)+k, x^{2}-4 x-5+k=0$
evidence of discriminant
eg $\quad b^{2}-4 a c, \Delta$
correct substitution into discriminant of g
eg $\quad(-4)^{2}-4(1)(-5+k), 16-4(k-5)$
recognizing discriminant is negative
eg $\quad \Delta<0,(-4)^{2}-4(1)(-5+k)<0,16<4(k-5), 16-4(-1)(5)<0$
correct working (must be correct inequality)
eg $\quad-4 k<-36, k-5>4,16+20-4 k<0$
$k>9$ A1
METHOD 2 - (transformation of vertex of f)
valid approach for finding $f(x)$ vertex
eg $\quad-\frac{b}{2 a}=2, f^{\prime}(x)=0$
correct vertex of $f(x)$
eg (2,9)
correct vertex of $-f(x)$
eg (2, -9)
correct vertex of $g(x)$
eg $\binom{2}{-9}+\binom{0}{k},(2,-9+k)$
recognizing when vertex is above x-axis
eg $\quad-9+k>0$, sketch
$k>9$ A1

Question 5 continued
METHOD 3 - (transformation of f)
recognizing vertical reflection of $f(x)$
eg $-f(x), x^{2}-4 x-5$, sketch
correct expression for $g(x)$
eg $\quad x^{2}-4 x-5+k$
valid approach for finding vertex of $g(x)$
eg $\quad-\frac{b}{2 a}=2, g^{\prime}(x)=0$
correct y coordinate of vertex of $g(x)$
eg $y=-9+k,(2,-9+k)$
recognizing when vertex is above x-axis
(M1)
eg $\quad-9+k>0$, sketch
$k>9$ A1
6. evidence of integration
eg $\quad \int f^{\prime}(x) \mathrm{d} x, \int 6 \mathrm{e}^{2 x}$
correct integration (accept missing $+c$)
eg $\quad \frac{1}{2} \times 6 \mathrm{e}^{2 x}, 3 \mathrm{e}^{2 x}+c$
substituting initial condition into their integrated expression (must have $+c$)
eg $\quad 3 \mathrm{e}^{2 \times \ln 4}+c=20$
Note: Award $\boldsymbol{M O}$ if candidate has substituted into f^{\prime} or $f^{\prime \prime}$.
correct application of $\log \left(a^{b}\right)=b \log a$ rule (seen anywhere)
eg $\quad 2 \ln 4=\ln 16, \mathrm{e}^{\ln 16}, \ln 4^{2}$
correct application of $\mathrm{e}^{\ln a}=a$ rule (seen anywhere)
eg $\quad e^{\ln 16}=16,\left(e^{\ln 4}\right)^{2}=4^{2}$
correct working
eg $\quad 3 \times 16+c=20,3 \times(4)^{2}+c=20, c=-28$

$$
f(x)=3 \mathrm{e}^{2 x}-28
$$

7. (a) recognizing velocity is derivative of displacement
eg $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}, \frac{\mathrm{~d}}{\mathrm{~d} t}\left(10-\frac{7}{4} t^{2}\right)$
velocity $=-\frac{14}{4} t \quad\left(=-\frac{7}{2} t\right)$
A1 N2
[2 marks]
(b) valid approach to find speed of P_{2}
eg $\quad\left|\binom{4}{-3}\right|, \sqrt{4^{2}+(-3)^{2}}$, velocity $=\sqrt{4^{2}+(-3)^{2}}$
correct speed
eg $5 \mathrm{~ms}^{-1}$
recognizing relationship between speed and velocity (may be seen in inequality/equation)
R1
eg $\quad\left|-\frac{7}{2} t\right|$, speed $=\mid$ velocity \mid, graph of P_{1} speed, $\xrightarrow{\mid} \xrightarrow{\mid}$
correct inequality or equation that compares speed or velocity (accept any variable for q)
A1
eg $\quad\left|-\frac{7}{2} t\right|>5,-\frac{7}{2} q<-5, \frac{7}{2} q>5, \frac{7}{2} q=5$
$q=\frac{10}{7}$ (seconds) (accept $t>\frac{10}{7}$, do not accept $t=\frac{10}{7}$)
A1

Note: Do not award the last two A1 marks without the R1.

Section B

8. (a) valid approach
eg $\quad Q_{3}-Q_{1}, Q_{3}-1.1,4.5-a=1.1$

$$
a=3.4
$$

(b) $\frac{32}{5}(=6.4)(\mathrm{km})$
(c) METHOD 1 (standard deviation first)
valid approach
eg standard deviation $=\sqrt{\text { variance }}, \sqrt{\frac{16}{9}}$
standard deviation $=\frac{4}{3}(\mathrm{~km})$
valid approach to convert their standard deviation
eg $\frac{4}{3} \times \frac{5}{8}, \sqrt{\frac{16}{9}}=\frac{8}{5} M$
$\frac{20}{24}$ (miles) $\left(=\frac{5}{6}\right)$
Note: If no working shown, award M1A1MOAO for the value $\frac{4}{3}$.
If working shown, and candidate's final answer is $\frac{4}{3}$, award M1A1M0AO.
METHOD 2 (variance first)
valid approach to convert variance
eg $\left(\frac{5}{8}\right)^{2}, \frac{64}{25}, \frac{16}{9} \times\left(\frac{5}{8}\right)^{2}$
variance $=\frac{25}{36}$
valid approach
eg standard deviation $=\sqrt{\text { variance }}, \sqrt{\frac{25}{36}}, \sqrt{\frac{16}{9} \times\left(\frac{5}{8}\right)^{2}}$
$\frac{20}{24}$ (miles) $\left(=\frac{5}{6}\right)$

Question 8 continued
(d) correct frequency for 22 minutes
eg 20
adding their frequency (do not accept $22+400$)
eg $20+400,420$ athletes
$m=30$ (minutes)
A1
(e) 27 (minutes)
correct working
(A1)
eg 130 athletes between 22 and 27 minutes, $\mathrm{P}(22<t<27)=\frac{150-20}{600}, \frac{13}{60}$
evidence of conditional probability or reduced sample space
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(t<27 \mid 22<t<30), \frac{\mathrm{P}(22<t<27)}{\mathrm{P}(22<t<m)}, \frac{150}{400}$
correct working
eg $\frac{\frac{130}{600}}{\frac{400}{600}}, \frac{150-20}{400}$
$\frac{130}{400}\left(\frac{13}{40}=\frac{78000}{240000}=\frac{390}{1200}=0.325\right)$
Note: If no other working is shown, award AOAOM1AOAO for answer of $\frac{150}{400}$. Award NO for answer of $\frac{3}{8}$ with no other working shown.
9. (a) valid approach to find $\overrightarrow{\mathrm{AB}}$
(M1)
eg $\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}, \mathrm{A}-\mathrm{B}$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
8 \\
m-1 \\
-8
\end{array}\right)
$$

A1
N2
(b) valid approach
eg $\quad L=\left(\begin{array}{c}9 \\ m \\ -6\end{array}\right),\left(\begin{array}{c}9 \\ m \\ -6\end{array}\right)=\left(\begin{array}{c}-3 \\ -19 \\ 24\end{array}\right)+s\left(\begin{array}{c}2 \\ 4 \\ -5\end{array}\right)$
one correct equation
eg $\quad-3+2 s=9,-6=24-5 s$
correct value for s
A1
eg $\quad s=6$
substituting their s value into their expression/equation to find m (M1) eg $\quad-19+6 \times 4$
$m=5 \quad$ A1 A1 N3 [5 marks]
continued...

Question 9 continued
(c) valid approach
eg $\quad \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}9 p \\ -6 \\ 3\end{array}\right), C=9 \boldsymbol{u}+B, \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}x-9 \\ y-5 \\ z+6\end{array}\right)$
correct working to find C
eg $\quad \overrightarrow{\mathrm{OC}}=\left(\begin{array}{c}9 p+9 \\ -1 \\ -3\end{array}\right), \mathrm{C}=9\left(\begin{array}{c}p \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right)+\left(\begin{array}{c}9 \\ 5 \\ -6\end{array}\right), y=-1$ and $z=-3$
correct approach to find $|\boldsymbol{u}|$ (seen anywhere)
eg $\quad p^{2}+\left(-\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}, \sqrt{p^{2}+\frac{4}{9}+\frac{1}{9}}$
recognizing unit vector has magnitude of 1
eg $\quad|\boldsymbol{u}|=1, \sqrt{p^{2}+\left(-\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}}=1, p^{2}+\frac{5}{9}=1$
correct working
eg $\quad p^{2}=\frac{4}{9}, p= \pm \frac{2}{3}$
$p=\frac{2}{3}$
substituting their value of p
$e g \quad\left(\begin{array}{l}x-9 \\ y-5 \\ z+6\end{array}\right)=\left(\begin{array}{c}6 \\ -6 \\ 3\end{array}\right), \mathrm{C}=\left(\begin{array}{c}6 \\ -6 \\ 3\end{array}\right)+\left(\begin{array}{c}9 \\ 5 \\ -6\end{array}\right), \mathrm{C}=9\left(\begin{array}{c}\frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right)+\left(\begin{array}{c}9 \\ 5 \\ -6\end{array}\right), x-9=6$
C $(15,-1,-3)$ (accept $\left(\begin{array}{l}15 \\ -1 \\ -3\end{array}\right)$)
Note: The marks for finding p are independent of the first two marks. For example, it is possible to award marks such as
(M0)(A0)A1(M1)(A1)A1 (M0)A0 or (M0)(A0)A1(M1)(A0)A0 (M1)A0.
10. (a) (i) $f^{\prime}(x)=-k x^{-2}$
(A1)

$$
f^{\prime}(p)=-k p^{-2}\left(=-\frac{k}{p^{2}}\right)
$$

A1
(ii) attempt to use point and gradient to find equation of L_{1}
eg $\quad y-\frac{k}{p}=-k p^{-2}(x-p), \frac{k}{p}=-\frac{k}{p^{2}}(p)+b$
correct working leading to answer
A1
eg $\quad p^{2} y-k p=-k x+k p, y-\frac{k}{p}=-\frac{k}{p^{2}} x+\frac{k}{p}, y=-\frac{k}{p^{2}} x+\frac{2 k}{p}$
$k x+p^{2} y-2 p k=0$
AG
(b) METHOD 1 - area of a triangle
recognizing $x=0$ at B
correct working to find y-coordinate of B
eg $\quad p^{2} y-2 p k=0$
y-coordinate of B at $y=\frac{2 k}{p}$ (may be seen in area formula)
correct substitution to find area of triangle
eg $\frac{1}{2}(2 p)\left(\frac{2 k}{p}\right), p \times\left(\frac{2 k}{p}\right)$
area of triangle $\mathrm{AOB}=2 k$
A1
N3
continued...

Question 10 continued

METHOD 2 - integration

recognizing to integrate L_{1} between 0 and $2 p$
eg $\quad \int_{0}^{2 p} L_{1} \mathrm{~d} x, \int_{0}^{2 p}-\frac{k}{p^{2}} x+\frac{2 k}{p}$
correct integration of both terms
eg $\quad-\frac{k x^{2}}{2 p^{2}}+\frac{2 k x}{p},-\frac{k}{2 p^{2}} x^{2}+\frac{2 k}{p} x+c,\left[-\frac{k}{2 p^{2}} x^{2}+\frac{2 k}{p} x\right]_{0}^{2 p}$
substituting limits into their integrated function and subtracting (in either order)
eg $-\frac{k(2 p)^{2}}{2 p^{2}}+\frac{2 k(2 p)}{p}-(0),-\frac{4 k p^{2}}{2 p^{2}}+\frac{4 k p}{p}$
correct working
eg $\quad-2 k+4 k$
area of triangle $\mathrm{AOB}=2 k$
continued...

Question 10 continued
(c)

Note: In this question, the second M mark may be awarded independently of the other marks, so it is possible to award (MO)(AO)M1(AO)(AO)AO.
recognizing use of transformation
(M1)
eg area of triangle AOB = area of triangle DEF, $g(x)=\frac{k}{x-4}+3$,
gradient of $L_{2}=$ gradient of $L_{1}, \mathrm{D}(4,3), 2 p+4$, one correct shift
correct working
(A1)
eg area of triangle $\mathrm{DEF}=2 k, \mathrm{CD}=3, \mathrm{DF}=2 p, \mathrm{CG}=2 p, \mathrm{E}\left(4, \frac{2 k}{p}+3\right)$,
$\mathrm{F}(2 p+4,3), \mathrm{Q}\left(p+4, \frac{k}{p}+3\right)$, gradient of $L_{2}=-\frac{k}{p^{2}}, g^{\prime}(x)=-\frac{k}{(x-4)^{2}}$,
area of rectangle $\mathrm{CDFG}=2 k$
valid approach
(M1)
eg $\frac{\mathrm{ED} \times \mathrm{DF}}{2}=\mathrm{CD} \times \mathrm{DF}, 2 p \cdot 3=2 k, \mathrm{ED}=2 \mathrm{CD}, \int_{4}^{2 p+4} L_{2} \mathrm{~d} x=4 k$
correct working
(A1)
eg $\mathrm{ED}=6, \mathrm{E}(4,9), k=3 p$, gradient $=\frac{3-\left(\frac{2 k}{p}+3\right)}{(2 p+4)-4}, \frac{-6}{\left(\frac{2 k}{3}\right)},-\frac{9}{k}$
correct expression for gradient (in terms of p)
eg $\frac{-6}{2 p}, \frac{9-3}{4-(2 p+4)},-\frac{3 p}{p^{2}}, \frac{3-\left(\frac{2(3 p)}{p}+3\right)}{(2 p+4)-4},-\frac{9}{3 p}$
gradient of L_{2} is $-\frac{3}{p}\left(=-3 p^{-1}\right)$

